

Lecture 2: Statics of particles

Ahmad Shahedi Shakil

Lecturer, Dept. of Mechanical Engg, BUET

E-mail: [sshakil@me.buet.ac.bd,](mailto:sshakil@me.buet.ac.bd) shakil6791@gmail.com

Website: sshakil.buet.ac.bd

Courtesy: Vector Mechanics for Engineers, Beer and Johnston

Resultant of Two Forces

- force: action of one body on another; characterized by its *point of application*, *magnitude*, *line of action*, and *sense*.
- Experimental evidence shows that the combined effect of two forces may be represented by a single *resultant* force.
- The resultant is equivalent to the diagonal of a parallelogram which contains the two forces in adjacent legs.
- Force is a *vector* quantity.

Vectors

- *Vector*: parameters possessing magnitude and direction which add according to the parallelogram law. Examples: displacements, velocities, accelerations.
- *Scalar*: parameters possessing magnitude but not direction. Examples: mass, volume, temperature
- Vector classifications:
	- *Fixed* or *bound* vectors have well defined points of application that cannot be changed without affecting an analysis.
	- *Free* vectors may be freely moved in space without changing their effect on an analysis.
	- *Sliding* vectors may be applied anywhere along their line of action without affecting an analysis.
- *Equal* vectors have the same magnitude and direction.
- *Negative* vector of a given vector has the same magnitude and the opposite direction.

Addition of Vectors

- Trapezoid rule for vector addition
- Triangle rule for vector addition
- Law of cosines,
	- $\vec{R} = \vec{P} + \vec{Q}$ $R^2 = P^2 + Q^2 - 2PQ\cos B$ $= P +$
- Law of sines, *A* $sin C$ *R* $\sin A$ $\sin B$ \sin *Q* \equiv $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$
- Vector addition is commutative,

 $\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$

Addition of Vectors

• The polygon rule for the addition of three or more vectors.

• Vector subtraction

Resultant and components of forces

• *Concurrent forces*: set of forces which all pass through the same point.

A set of concurrent forces applied to a particle may be replaced by a single resultant force which is the vector sum of the applied forces.

• *Vector force components*: two or more force vectors which, together, have the same effect as a single force vector.

Prob# 2.1 (Beer)

• Graphical solution - A parallelogram with sides equal to **P** and **Q** is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured,

The two forces act on a bolt at *A*. Determine their resultant.

Prob# 2.1 (Beer)

• Graphical solution - A triangle is drawn with **P** and **Q** head-to-tail and to scale. The magnitude and direction of the resultant or of the third side of the triangle are measured,

$$
R = 98 \text{ N} \quad \alpha = 35^{\circ}
$$

• Trigonometric solution - Apply the triangle rule. From the Law of Cosines,

$$
R^{2} = P^{2} + Q^{2} - 2PQ\cos B
$$

= $(40N)^{2} + (60N)^{2} - 2(40N)(60N)\cos 155^{\circ}$

 $R = 97.73N$

From the Law of Sines,

$$
\frac{\sin A}{Q} = \frac{\sin B}{R} \quad or, \sin A = \sin B \frac{Q}{R} = \sin 155^\circ \frac{60N}{97.73N}
$$

A = 15.04°

$$
\alpha = 20^\circ + A \qquad \frac{Q}{Q} = 35.04^\circ
$$

Prob # 2.2 (Beer)

 30°

- A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is 5000 lbf directed along the axis of the barge, determine
- a) the tension in each of the ropes for $\alpha = 45^\circ$
- Graphical solution Parallelogram Rule with known resultant direction and magnitude, known directions for sides.

$$
T_1 = 3700 \text{ lbf}
$$
 $T_2 = 2600 \text{ lbf}$

Prob # 2.2 (Beer)

• Trigonometric solution - Triangle Rule with Law of Sines

$$
\frac{T_1}{\sin 45^\circ} = \frac{T_2}{\sin 30^\circ} = \frac{5000 \text{ lbf}}{\sin 105^\circ}
$$

$$
T_1 = 3660 \text{ lbf}
$$
 $T_2 = 2590 \text{ lbf}$

Rectangular components of a force

• May resolve a force vector into perpendicular components so that the resulting parallelogram is a rectangle. \vec{F}_x and \vec{F}_y are referred to as *rectangular vector components* and

$$
\vec{F} = \vec{F}_x + \vec{F}_y
$$

• Define perpendicular *unit vectors* \vec{i} and \vec{j} which are parallel to the *x* and *y* axes.

• Vector components may be expressed as products of the unit vectors with the scalar magnitudes of the vector components.

$$
\vec{F} = F_x \vec{i} + F_y \vec{j}
$$

 $F = F_x \vec{i} + F_y \vec{j}$
 *F*_{*x*} and *F*_{*y*} are referred to as the *scalar components* of *F* 11

Addition of forces by summing components

 \rightarrow \rightarrow \rightarrow \rightarrow • Wish to find the resultant of 3 or more concurrent forces,

$$
\vec{R} = \vec{P} + \vec{Q} + \vec{S}
$$

Resolve each force into rectangular compon

R_x $\vec{i} + R_y \vec{j} = P_x \vec{i} + P_y \vec{j} + Q_x \vec{i} + Q_y \vec{j} + S_x \vec{i} + (P_y + Q_y + S_y) \vec{i} + (P_y + Q_y + S_y) \vec{k}$

The scalar components of the resultant are e

to the sum of the corresponding scalar

compone $(P_x + Q_x + S_x)\vec{i} + (P_y + Q_y + S_y)\vec{j}$ $R_x i + R_y j = P_x i + P_y j + Q_x i + Q_y j + S_x i + S_y j$ $\vec{i} + R_{y}\vec{j} = P_{x}\vec{i} + P_{y}\vec{j} + Q_{x}\vec{i} + Q_{y}\vec{j} + S_{y}\vec{i} + S_{y}\vec{j}$ $= (P_{v} + U_{v} + S_{v})l + (P_{v} + U_{v} +$ • Resolve each force into rectangular components

• The scalar components of the resultant are equal to the sum of the corresponding scalar components of the given forces.

$$
R_x = P_x + Q_x + S_x \qquad R_y = P_y + Q_y + S_y
$$

= $\sum F_x$

• To find the resultant magnitude and direction,

$$
R = \sqrt{R_x^2 + R_y^2} \qquad \theta = \tan^{-1} \frac{R_y}{R_x}
$$

Problem 2.3 (Beer)

Four forces act on bolt *A* as shown. Determine the resultant of the force on the bolt.

• Resolve each force into rectangular components.

- Determine the components of the resultant by adding the corresponding force components.
- $\int \mathbf{R}_{x} = (199.1 \text{ N})\mathbf{i}$ Calculate the magnitude and direction.

$$
R = \sqrt{199.1^{2} + 14.3^{2}}
$$

\n
$$
\tan \alpha = \frac{14.3 \text{ N}}{199.1 \text{ N}}
$$

\n
$$
R = 199.6 \text{ N}
$$

\n
$$
\alpha = 4.1^{\circ}
$$

Equilibrium of a particle

- When the resultant of all forces acting on a particle is zero, the particle is in *equilibrium*.
- *Newton's First Law*: If the resultant force on a particle is zero, the particle will remain at rest or will continue at constant speed in a straight line.

- Particle acted upon by two forces:
	- equal magnitude
	- same line of action
	- opposite sense

- Particle acted upon by three or more forces:
	- graphical solution yields a closed polygon
	- algebraic solution

$$
\vec{R} = \sum \vec{F} = 0
$$

$$
\sum F_x = 0 \qquad \sum F_y = 0
$$

Free-Body Diagrams

Space Diagram: A sketch showing the physical conditions of the problem.

Free-Body Diagram: A sketch showing only the forces on the selected particle.

Problem 2.6

It is desired to determine the drag force at a given speed on a prototype sailboat hull. A model is placed in a test channel and three cables are used to align its bow on the channel centerline. For a given speed, the tension is 40 lb in cable *AB* and 60 lb in cable *AE*.

Determine the drag force exerted on the hull and the tension in cable *AC*.

• From the free body diagram of the hull

$$
\tan \alpha = \frac{7 \text{ ft}}{4 \text{ ft}} = 1.75
$$
 $\tan \beta = \frac{1.5 \text{ ft}}{4 \text{ ft}} = 0.375$
 $\alpha = 60.25^{\circ}$ $\beta = 20.56^{\circ}$

• Now, condition for equilibrium,

$$
\vec{R} = \vec{T}_{AB} + \vec{T}_{AC} + \vec{T}_{AE} + \vec{F}_{D} = 0
$$

• Resolving the vector equilibrium equation into two component equations,

 $\vec{T}_{AB} = -(40 \text{ lb})\sin 60.26^\circ \vec{i} + (40 \text{ lb})\cos 60.26^\circ \vec{j}$
= $-(34.73 \text{ lb})\vec{i} + (19.84 \text{ lb})\vec{j}$ $(34.73 \text{ lb})\vec{i} + (19.84 \text{ lb})\vec{j}$ $\vec{T} = -(60 \text{ lb})\vec{i}$ $\left(-34.73+0.3512T_{AC}+F_D\right)\vec{i}$ $R = 0$
= $(-34.73 + 0.3512T_{AC} + F_D)\vec{i}$
+ $(19.84 + 0.9363T_{AC} - 60)\vec{j}$ $T_{AC} = T_{AC} \sin 20.56^{\circ} i + T_{AC} \cos 20.56^{\circ} j$
= 0.3512 $T_{AC} i$ + 0.9363 $T_{AC} j$
 $\vec{T} = -(60 \text{ lb})i$
 $\vec{F}_D = F_D i$ $+(19.84 + 0.9363 T_{AC} - 60) j$ $= (-34.73 + 0.3512T_{AC} + F_D)i$ *D* $\left\{ \begin{array}{c} \n\cdot \cdot \cdot \cdot \cdot \cdot \right\}$ *AC AC AC AC AC* AB \sim $\sqrt{1010}$ \rightarrow . The contract of the co $= 0.3512 T_{\text{tot}} \vec{i} + 0.9363 T_{\text{tot}} \vec{j}$ $=-(34.73 \text{ lb})t + (19.84 \text{ lb})j$
 $\bullet \vec{T}_{AC} = T_{AC} \sin 20.56^{\circ} \vec{i} + T_{AC} \cos 20.56^{\circ} \vec{j}$ $\cdot \vec{T}_{4B} = -(40 \text{ lb}) \sin 60.26^{\circ} \vec{i} + (40 \text{ lb}) \cos 60.26^{\circ} \vec{i}$ $\overline{0}$ \equiv \bullet $F_{\text{R}} = F_{\text{R}} l$

$$
\vec{R} = 0
$$

= (-34.73 + 0.3512T_{AC} + F_D) \vec{i}
+ (19.84 + 0.9363T_{AC} - 60) \vec{j}

This equation is satisfied only if each component of the resultant is equal to zero

$$
\begin{aligned} \left(\sum F_x = 0\right) & 0 = -34.73 + 0.3512T_{AC} + F_D\\ \left(\sum F_y = 0\right) & 0 = 19.84 + 0.9363T_{AC} - 60 \end{aligned}
$$

$$
T_{AC} = +42.9 \text{ lb}
$$

$$
F_D = +19.66 \text{ lb}
$$

Rectangular Components in Space

 \overline{y}

 \boldsymbol{B} \mathbf{F}_u A \mathcal{X} \mathbf{F}_h \tilde{z}

- The vector \vec{F} is contained in the plane *OBAC*. \rightarrow
- Resolve \vec{F} into horizontal and vertical components. $\begin{align*}\n\text{Ive } F \\
\text{on }\text{tail}\n\text{is}\n\end{align*}$

$$
F_y = F \cos \theta_y
$$

$$
F_h = F \sin \theta_y
$$

- Resolve F_h into rectangular components
	- $= F \sin \theta_y \sin \phi$ $F_z = F_h \sin \phi$ $= F \sin \theta_y \cos \phi$ $F_x = F_h \cos \phi$

Rectangular Components in Space

• With the angles between \vec{F} and the axes,

 $F\left(\cos\theta_x\vec{i} + \cos\theta_y\vec{j} + \cos\theta_z\vec{k}\right)$ x^i + $\cos \theta_y$ *j* + $\cos \theta_z$ *k* $= F \vec{\lambda}$ $F = F_x i + F_y j + F_z k$ $F_r = F \cos \theta_r$ $F_r = F \cos \theta_r$ $F_r = F$ $F_x = F \cos \theta_x$ $F_y = F \cos \theta_y$ $F_z = F \cos \theta_z$ $\vec{\lambda} = \cos \theta_x \vec{i} + \cos \theta_y \vec{j} + \cos \theta_z \vec{k}$ $= F(\cos \theta_x \vec{i} + \cos \theta_y \vec{j} + \cos \theta_z \vec{k})$ \rightarrow \rightarrow \rightarrow \rightarrow $= F_{x} l + F_{y} l +$

 \boldsymbol{x}

 \overline{D}

• $\vec{\lambda}$ is a unit vector along the line of action of \vec{F} and $\cos\theta_x$, $\cos\theta_y$, and $\cos\theta_z$ are the direction λ is a unit vector along the line of action of *F*
and $\cos \theta_x$, $\cos \theta_y$, and $\cos \theta_z$ are the direction
cosines for \vec{F} \vec{F} $\cos\theta_x$, $\cos\theta_y$, and $\cos\theta_z$

Rectangular Components in Space

Direction of the force is defined by the location of two points, $M(x_1, y_1, z_1)$ and $N(x_2, y_2, z_2)$

 $\left(d_x\vec{i}+d_y\vec{j}+d_z\vec{k}\right)$ $F_x = \frac{Fd_x}{d}$ $F_y = \frac{Fd_y}{d}$ $F_z = \frac{Fd_z}{d}$ $F = F\lambda$ $\frac{1}{d}$ $\left(d_x i + d_y j + d_z k\right)$ *d* = vector joining *M* and *N*
 $= d_x \vec{i} + d_y \vec{j} + d_z \vec{k}$
 $d_x = x_2 - x_1, \quad d_y = y_2 - y_1, \quad d_z = z_2 - z_1$ $F_z = \frac{F}{I}$ $F_z = \frac{F}{I}$ *x* Γ *x y y z z j* x^2 *y y z z* $\vec{\lambda} = \frac{1}{d} \begin{pmatrix} \vec{i} + d & \vec{j} + d & \vec{k} \end{pmatrix}$ $x_2 - x_1$, $a_y = y_2 - y_1$, $a_z = z_2 - z_1$ $= d$ ι + d ι + d κ $=$ vector joining. λ \rightarrow \rightarrow \rightarrow \rightarrow \vec{d} = vector joining M and N

x

Prob# 2.111 (Beer)

• A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. If the tension in wire AB is 630 lb, determine the vertical force P exerted by the tower on the pin at A.

